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Abstract. Although the minimum variance distortionless response (MVDR) beamformer can keep the 

desired signal from interfering signals, however, it has notch null and no sidelobe level control which may 

lead to performance degradation in the case of scattering environment or unexpected interfering signals such 

as rapidly moving jammer environment. It also has high sidelobe levels for either low number of samples or 

high input signal to noise ratio (SNR). The projected iterative MVDR (PI-MVDR) beamformer is presented 

to broaden the width of nulls, suppress the first sidelobe level and support the case of low number of samples 

no matter of low or high input SNR. The averaged covariance matrix used in the PI-MVDR beamformer can 

overcome the circumstance of low number of samples over any input SNR value. Projecting the averaged 

covariance matrix on to the interference space enables the iterative MVDR beamformer to steer a mainbeam 

toward the desired signal direction and make a broad null in the direction of an unwanted signal. To reduce 

the first sidelobe level, find the direction corresponding to the strongest sidelobe close to the mainbeam 

which is considered as a direction of arrival (DOA) of a hypothetical interference signal and employ the PI-

MVDR beamformer to produce extra wide null. The steering vector of the desired signal is estimated to 

illustrate the robustness of the PI-MVDR beamformer in the presence of DOA mismatch. Simulation results 

demonstrated the achievement of the presented approach.   
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1. Introduction  

Array beamforming methods make use of the spatial dimension to combat interference signals and noise 

by producing nulls at the direction of interference signals and a mainbeam at the direction of the desired 

signal. A variety of issues have been challenged to be solved. The performance can be severely degraded if 

the DOA is spread due to multipath propagation or rapidly moving interferences. Forming broad nulls 

around the directions of interferences can solve the problem since the broaden null can reject the interfering 

sources not only from a specific direction but from a specific spatial region as well. As a result, null 

broadening allows the interferer to move in a certain area. New interferences might exist during the time 

span processing. Suppressing the sidelobes especially the ones close to the mainbeam would be benefit to 

reject the new interferences disturbing the desired signal. Most beamformers dramatically degraded when 

received signal is either taken over few samples or strong, the weights might not only give a proper 

beampattern corresponding to the DOA of the received signal and high sidelobe as well. Another challenge is 

the sensitiveness to the mismatch between the actual and presumed steering vector of the desired signal.  

Covariance matrix taper (CMT) is a classical approach of null broadening [1]. Adaptive variable 

diagonal loading combined with the CMT approach is presented in [2] for null broadening beamforming to 

develop the CMT. The CMT and projection are combined, the null depth is deeper than that of the CMT 

approach [3]. The researches that focus only on the sidelobe reduction have been conducted. Recently, an 

iterative beamforming is proposed in order to improve the three conventional beamformers by placing extra 
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nulls to achieve the desired sidelobe level [4]. Efforts to broaden nulls and control the sidelobe levels have 

been done. In [5], the CMT is constructed to broaden the width of nulls for interference signal sources. 

Constraint of nulls and sidelobe levels are used to guarantee that the level is strictly lower than the prescribed 

threshold value. Certainly, the optimal solution needs complex computation. In [6], it uses the CMT to 

broaden the width of nulls and uses the support vector match regression to control the sidelobe level.    

The rest of paper is organized as follows. The signal model is described in Section 2. The conventional 

MVDR beamforming is updated in Section 3. The averaged covariance matrix is given in Section 4. Section 

5 presents an estimation of the steering vector of the desired signal used in the presence of DOA mismatch. 

The projected iterative MVDR beamformer is proposed in Section 6 for null broadening and first sidelobe 

suppression. The evaluation of the proposed method is verified in the simulation results of Section 7. Finally, 

conclusions are drawn in Section 8.   

2. Signal Model  

Consider a uniform linear array (ULA) comprising L omni-directional antenna elements with equispaced 

d as shown in Fig. 1. A narrowband source of interest and interferences are transmitted in the far field region 

of the array. The received signal at the sampling time k  is mathematically represented as [7] 

1
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I
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The 1L  received signal vector 
1 2( ) [ ( ) ( ) ( )]T

Lk x k x k x kx
 
consists of the desired signal, a 

sum of I interference signals ( ( 1)I L  ) and an additive noise. Let denote ( )ds k  be the desired signal 

waveform in the directions of arrival (DOA) of d , ( )is k
 
be the ith interference waveform in the DOA of 

i . An 1L  steering vector is expressed as 
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a  where   is the 

signal wavelength, ( )T denotes the transpose operation. The steering matrix with columns of the steering 

vector is given as 1[ ( ) ( ) ( )]d I  A a a a . Then, the received signal in Eq. (1) can be rewritten as  
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where 
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is an ( 1) 1I    

vector of the desired signal and interferences 

impinging on the antenna array. Assume that the desired and interference signals are uncorrelated, i.e., 
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where dp  and ip

 
denotes the power of the desired signal and

 
the ith interference signal, respectively.  

1 2( ) [ ( ) ( ) ( )]T

Lk n k n k n kn
 
is an 1L  complex noise vector with zero mean and variance 

2

n . In 

fact, the directional sources and the noise are uncorrelated, i.e., 
*[ ( ) ( )] 0d lE s k n k   and 

*[ ( ) ( )] 0i lE s k n k   

for 1, ,i I and 1, ,l L . The noise on different elements is also assumed to be uncorrelated and 

independent, i.e. 
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 where [ ]E  denotes the expectation 

operator and 
*( ) denotes the complex conjugate.  

The covariance matrix of the received signal is formulated as [ ( ) ( )]H

x E k kR x x . By using ( )kx  in 

Eq. (1), it becomes 
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where 
LI is the L L  identity matrix and

 
( )H

 
denotes the complex conjugate transposition operation. Eq. 

(3) can be considered as a sum of the covariance matrix of the desired signal as ( ) ( )H

d d d dp  R a a and 

the interference-plus-noise covariance matrix as 
2
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Fig. 1: A ULA of L  antenna elements receiving ( 1)I   directional sources  

3. Iterative MVDR Beamformer 

The output signal can be calculated by ( ) ( )Hy k k w x where 
1 2[ ]T

Lw w ww  is an 1L  
weight vector. Given w , the output SINR is found by 

2| ( ) |
SINR( )

H

d d

H

i n

p 




w a

w
w R w

.        (4) 

Under assumption that the steering vector of the desired signal ( )da is known precisely, the minimum 

variance distortionless response (MVDR) beamformer is obtained by minimizing the denominator of Eq. (4), 

i.e., minimizing the variance/power of interference and noise while keeping the numerator of Eq. (4) fixed, 

i.e., ensuring the output desired signal without distortion towards the direction of the desired source. This is 

equivalent to a linearly constrained quadratic optimization problem as 

   
min subject to ( ) 1H H

i n d 
w

w R w w a .     (5) 

Using the Lagrange multiplier, the optimal solution for this weight vector is obtained as [8] 

1 ( )MDVR i n d 

w R a        (6) 

where 
11/ ( ) ( )H

d i n d  

 a R a  and 
1( ) denotes the matrix inversion. To avoid the inverse matrix 

calculation in Eq. (6), the solution can be obtained by weight adjustment as [8] 

       1 ( ( ))m m i n m dc    w w R w a .       (7)  

For fast convergence, set the constant min max2 / ( )c     where min  and max  are the minimum and 

maximum eigenvalues of i nR , respectively. For some amount of number of iterations, the weight vector in 

Eq. (7) converges to MDVRw  [9-10].  

4. Averaged Covariance Matrix  

Since it is difficult to obtain i nR  in practice, this matrix is commonly replaced by the sample 

covariance matrix of the received signal with limited number of snapshots K  as 
1

0

1ˆ ( ) ( )
K

H

x

k

k k
K





 R x x  .  

When K  , ˆ
xR  will converge to the theoretical covariance matrix xR . There are two drawbacks of 

replacement. First, when K  is small, a gap between ˆ
xR  and xR becomes larger. The limited number of 

snapshots can cause the disturbance of small eigenvalues corresponding to the noise subspace. As a result, 

the performance of the beamforming will be degraded due to the rise of sidelobes. Secondly, the 

97



performance degradation will be significant as input SNR increases which can be proven by substituting 

x d i n R R R
 
into 

H

xw R w . Since ( ) 1H

d w a  , it yields as 

     
H H

x d i np  w R w w R w .     (8) 

Thus, as the power dp  increases, such replacement can cause large error.  

Consider the case of low number of samples 30K  and high input SNR (
2

1010log ( / )d np  ) 3 dB.   Fig. 

2 shows the comparison the optimal beamformer MDVRw
 
using the sample covariance matrix of the receive 

signal ˆ
xR  and the sample covariance matrix of the interference-plus-noise signal given by 

1

0

1ˆ ( ( ) ( ))( ( ) ( ))
K

H

i n i i

k

k k k k
K







  R x n x n  . A ULA of 10 elements is used with inter-element spacing 

/ 2d  . The desired signal is taken at 0d    and two interferences are taken at 1 45     and 

2 45   . The beampattern using ˆ
xR  (blue line) gives the bad mainbeam and shallow nulls. For the 

beampattern using ˆ
i nR (red line), the mainbeam is unity at 0d  and the two notch nulls are at 1 45    , 

2 45   . The result assures that the replacement i nR  by ˆ
xR  degrades the performance of the MVDR 

beamformer if high input SNR is present in the sample data or low number of snapshot is available. 

Then, an estimate of the interference-plus-noise covariance matrix is needed to achieve a better 

beampattern. The spatial spectrum distribution in all direction is first created as 

    
1

( )
( ) ( )H H

i n i n

P 
  


a E E a

     (9) 

where i nE  is the interference plus noise subspace found by applying the singular value decomposition to 

ˆ
xR  as 

1

ˆ
L

H

x l l l

l

e


R e e  . Descend the order of eigenvalues le as  1 2 , , Le e e   . According to Eqs. (1) and 

(2), the received signal is the addition of source of interest, interferences and noise. Consequently, the 

interference plus noise subspace consists of the eigenvectors belong to the small eigenvalues built as 

2 3[ ]i n L E e e e . The interference-plus-noise covariance matrix can be reconstructed by utilizing 

the spectrum to integrate over a region separated from the desired directions [11].   

( ) ( ) ( )H

i n P d   



 R a a      (10) 

where  is the complement sector of  and   is an angular sector where the desired signal is located. 

  covers the whole spatial domain while  is empty.  

However, at low input SNR, the replacement of i nR  by ˆ
xR  results in a small error, since the desired 

signal power dp  is small. At high input SNR, we need an estimate instead of the replacement. In order to 

select the proper covariance matrix corresponding to the input SNR value, i nR  will be replaced by the 

averaged covariance matrix aveR  as [12] 

ˆ ˆ/ || || (1 ) / || ||ave i n i n F x x F    R R R R R     (11) 

where || ||F is the frobenius norm. The parameter  is defined as  

    
2

ˆ( ) ( )

ˆ|| || || ( ) ||

H

d x d

x F d

 





a R a

R a
      (12) 

where || || is the norm of a vector. The value of  is between zero and one which can be used as an indicator 

of the desired signal power compared with the interference signal power. When   is equal to zero, it means 

that there is no signal from the direction d , then ˆ
xR can be used for low input SNR. When   is equal to 

one, it means that the eigenvector associated to the largest eigenvalue of ˆ
xR  is equal to ( )da , then 

i nR  

should be used for high input SNR. Figure 3 shows the  values increase versus the input SNR.  
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5. Steering Vector of the Desired Signal Estimation 

When the DOA of the desired signal mismatch exists, the performance of the MVDR beamformer and 

the iterative MVDR beamformer will be significantly degraded. Also, the value of  will reflect incorrect 

meanings. The mismatch between the actual DOA d  and the presumed DOA 
d  falls in the uncertainty 

region defined as [ , ]d d d d      where 
d  is the angular sector of mismatch. Since only one 

desired signal assumed in the uncertainty region, the eigenvector with the largest eigenvalue of the 

constructed matrix will be the steering vector estimate. Build a matrix over the uncertainty region as 

1

( ) ( )

ˆ( ) ( )

H

H

x

 

 



 
a a

V
a R a

. Apply the singular value composition to the matrix V  to obtain the most principle 

eigenvector 
dsv . The steering vector of the desired signal can be estimated as ( )

| |

ds
d

dsv
 

v
a  where | |dsv  is 

the absolute value of the first element in the vector dsv  [13]. 

6. Projected Iterative MVDR Beamformer 

For low input SNR, the weight vector MVDRw  is able to form a mainbeam in the look direction of the 

desired signal and nulls in the undesired directions belong to the DOAs of interference signals.  However, the 

null is notch and it does not take into account the sidelobe levels. Since a moving interference is a serious 

problem in the antenna array, we then assume that the direction of the desired signal d  is constant whereas 

i  , on the other hand, is not constant. In a local time-varying scattering environment, the interference 

direction is randomly selected from the interval ( / 2, / 2)i i      where   is the total direction 

change so-called the angular spread which is used to determines the null width. 

New interference signals may arise during the time span that a certain data sample set is processed. Since 

this sample set does not contain these new interference signals, then no null is create to cancel, thus resulting 

in SINR degradation. Especially, if these new interference signals have DOA close to the directions of the 

mainlobe which is the DOA of the desired signal. In such case, a low first sidelobe beside the mainlobe 

would help to keep the SINR at high levels. The nulls can be broadened and the sidelobe level can be 

controlled by the following projection transform [3]. 

The projection approach begins with constructing the correlation matrix of  I  interference signals as 

1

( ) ( )
I

H

P i i

i

 


Z a a . Next, the matrix 
pZ  is tapered by 

P PR Z T
 
where  represents Hadamard 

product and the sample of the ath
  

row and bth
 
column of the tapered matrix T  is expressed as 

sin(( ) )

( )
ab

a b
T

a b





 


 
. Decompose the matrix PR  as 

1

L
H

P l l l

l




R v v . By chosing J  eigenvectors 

belonging to the J  largest eigenvalues, the projection matrix is 
1

J L
H

P l l

l





T v v . Then, the projected 

covariance matrix can be modified as 
H

PRO P ave PR T R T . The projected iterative MVDR (PI-MVDR) 

beamformer is obtained by replacing i nR  with PROR  as [9-10]  

1 ( ( ))m m PRO m dc    w w R w a  .     (13) 

Let PI MVDRw  denotes the weight vector after the iteration is terminated.  

After obtaining PI MVDRw , the next step is to suppress the sidelobe levels. The proposed algorithm to 

suppress the first sidelobe levels is summarized by the flowchart drawn in Fig. 4. 

7. Simulation Results 

A 30-element ULA with a spacing of half wavelength is used. The additive noise is modeled as a 

complex Guassian spatially and temporally white process with zero mean. Two interfering sources 
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( 2)I  are from directions of  
1 45     and 

2 45  with the angular spread 10   . The input SNR 

is equal to 3 dB and the INR (interference to noise ratio) is equal to 6 dB. The number of snapshot is set to 

30K  .  The actual DOA of the desired signal is 5d   . The angular sector of mismatch is 2d   . The 

possible angular sector of the desired signal is located [3 7 ]   , so the complement sector is 

[ 90 3 ) (7 90 ]        . The number of weight adjustment to terminate the iteration is 15.  

Figure 5 shows the PI-MVDR beamformer by using ˆ
xR , ˆ

i nR , 
i nR  and 

aveR  to generate 
PROR  . The 

beam patterns using ˆ
xR , ˆ

i nR
 
(blue and purple lines) is bad when the number of snapshot is few and the 

input SNR is high. The beampattern using 
i nR  (black line) can reduce the sidelobe levels but still has 

shallow nulls since the interference and noise subspace generated is not good for low number of samples. 

The beampattern using aveR  (red line) provides not only the right mainbeam at the desired direction 5d    

and also broad nulls between 50  to 40  and 40 to 50  corresponding to the angular spread of each 

interference direction.  

In Figure 6, the beampattern after suppression (red line) can reduce the first sidelobe levels as marked by 

the two ellipses and still keep the null width and the mainbeam unchanged. Also, this does not affect the 

position of the nulls initially placed to cancel the interference signals.  

It can be observed in Figure 7 that the output SINR increases significantly especially in the negative 

range input SINR. Due to the high gain of the output SINR over the input SINR, it implies that the 

interference signals at 1 45    , 2 45   are mitigated efficiently.   

      
Fig. 2: Beampatterns by the MVDR Beamformer                           Fig. 3: The values of  versus the input SNR 

using ˆ
xR  and  ˆ

i nR  

Projected iterative MVDR

Beamforming to calculate          
PI MVDRw

Find the directions of the first 

sidelobes beside the mainbeam.

Consider this directions as 

hypothetical interference signals.

Create the new weight                   .
PI MVDRw

               
Fig. 4: Flowchart of the sidelobe suppression                  Fig. 5: Beampattrns by the PI-MVDR beamformer  

                                                                                                    using ˆ
xR ,  ˆ

i nR ,     
i nR  and aveR  to generate PROR  
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Fig. 6: Beampatterns before and after suppressing              Fig. 7: Input SINR versus output SINR 

the sidelobe levels 

8. Conclusions 

The projected iterative MVDR (PI-MVDR) beamformer is proposed to enhance the conventional MVDR 

beamformer. The improvement can overcome the inverse covariance matrix avoidance, support available 

low number of samples, broaden nulls and suppress the first sidelobe levels close to the mainlobe. The 

covariance matrix used in the PI-MVDR beamformer is an average of between the estimated interference-

plus-noise covariance matrix and the sample covariance matrix of the received signal. In the presence of 

DOA mismatch, low number of samples circumstance and high input SNR, the PI-MVDR is capable of 

achieving all purposes after a few iterations. In addition, the averaged covariance matrix gives the better 

results than only using the estimated interference-plus-noise covariance matrix. 
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